Measuring Energy Security Risk

Daniel E. Klein Twenty-First Strategies

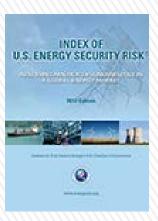
Geopolitics, Country Risk Assessment and Commodity Pricing Workshop U.S. Energy Information Administration

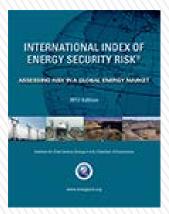
> Washington DC July 15, 2014

Topics

- » Measuring Energy Security Risk
- » Developing the U.S. Index of Energy Security Risk
- » Developing an International Index
- » Findings
- » Insights and Issues

21stStratęgies




Page 3

Institute for 21st Century Energy

- » An affiliate of the U.S. Chamber of Commerce
- » Mission: Unify policymakers, regulators, business leaders, and the American public behind a common sense energy strategy to help keep America secure, prosperous, and clean.
- » Approach: Build support for meaningful energy action at the local, state, national, and int'l levels through policy development, education, and advocacy.
- » <u>http://www.energyxxi.org/energy-security-risk-index</u>

21stStrategies

Energy Security: Four Decades of "It's a Problem"

Nixon: "Project Independence 1980 is a series of plans and goals set to insure that by the end of this decade, Americans will not have to rely on any source of energy beyond our own." (25-Nov-1973)

Ford: "I am recommending a plan to make us invulnerable to cutoffs of foreign oil. It will require sacrifices, but it--and this is most important--it will work." (15-Jan-1975)

Carter: "Our decision about energy will test the character of the American people and the ability of the President and the Congress to govern. This difficult effort will be the "moral equivalent of war" (18-Apr-1977)

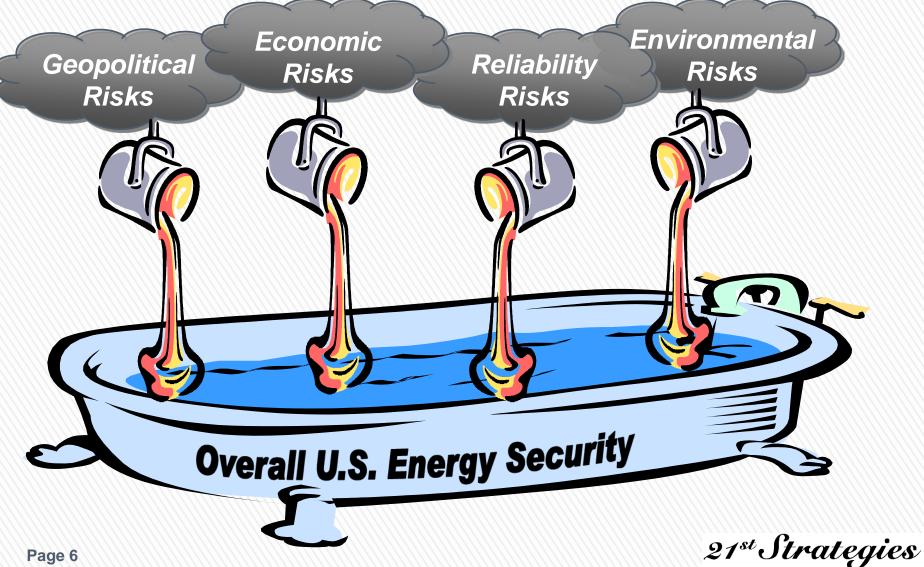
Clinton: "... we must do more to free working families from the grip of rising energy costs, especially the price we pay at the pump. ... we still have more to do to strengthen our security over the long term. That's the most important thing." (01-Jul-2000)

> **Bush:** "Keeping America competitive requires affordable energy. And here we have a serious problem: America is addicted to oil, which is often imported from unstable parts of the world." (31-Jan-2006)

Bush: "Our imports of foreign oil have been climbing steadily since 1985 and now stand at 42 percent of our total consumption. Too many of those oil imports come from sources in troubled parts of the world." (20-Feb-1991) **Reagan:** "Overall, the outlook for this country's energy supplies is not nearly as grim as some have painted it, although our problems are not all behind us... Given our continued vulnerability to energy supply disruptions, certain emergency preparations ... remain principally a Government responsibility. (17-Jul-1981)

Obama: "So we have a choice to make. We can remain one of the world's leading importers of foreign oil, or we can make the investments that would allow us to become the world's leading exporter of renewable energy. We can let climate change continue to go unchecked, or we can help stop it. We can let the jobs of tomorrow be created abroad, or we can create those jobs right here in America and lay the foundation for lasting prosperity." (19-Mar-2009)

What do we even mean by "Energy Security"?


Is it

- » How much oil we import?
- » Who controls the energy supplies?
- » How much do we pay?
- » What countries get the money?
- » How sustainable over the long-term?
- » How reliable are the supplies?
- » How vulnerable to war, weather, disruption, etc.?
- » How well-suited to a low-carbon future?
- » Whether we have a trained and educated labor force?

.....Yes

- » All of them.
- » ... and much more 21st Strategies

"Energy Security" requires a reliable supply of clean & affordable energy, consistent with domestic and international objectives and sustainability.

Need for an Index of U.S. Energy Security Risk

- » How can we tell if U.S. energy security is getting better or worse?
 - > "If you can't measure it, you can't manage it." (Peter Drucker)
- » Measuring helps us know "How are we doing?"
 - > Where have we been?
 - > Where are we now?
 - > Where are we headed?
 - > What actions would make a difference?
- » Most existing measures of energy security focus on oil & imports
 - > Far too narrow in scope
 - > Inadequate to capture totality and complexity of energy security

21stStrategies

Building the Index: Complexity Demands Multiple Metrics

- » 37 metrics drive the 1970-2040 assessment
 - > Grouped into nine categories:
 - 1. Global Fuels
 - 2. Fuel Import
 - 3. Energy Expenditure

 - 5. Energy Use intensity

- 6. Electric Power Sector
- 7. Transportation Sector
- 8. Environmental
- 4. Price and Market Volatility 9. Research and Development
- > Metric units transformed into comparable indexes with 1980 = 100.
- » These 37 metrics used to create four Sub-Indexes measuring risk in areas of particular concern
 - **1.** Geopolitical (30%) 3. Reliability (20%) 4. Environmental 2. Economic (30%) (20%)
- » When weighted and aggregated, these Sub-Indexes sum to an overall Index of U.S. Energy Security Risk.

21stStratęgies

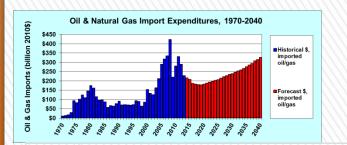
21stStratęgies

What Makes for a Good Metric?

- » An ideal metric will reflect:
 - > **Sensibility** Relates to common-sense expectations
 - > Credibility Data sources are well-recognized
 - > **Transparency** Derivation & manipulations are clear
 - > Completeness Historical data, preferably back to 1970
 - > *Forward-looking* Extends out to 2040; dovetails cleanly with forecasts
 - > Updatability Both recent data and new forecast outlooks
- » But reality sometimes falls short of the ideal
 - > Historical data missing, esp. in the 1970s
 - > Forecasts weak, and sometimes impossible
 - > Dovetailing of historical and forecast data series

» Compromises are sometimes needed between what's theoretically ideal and what's realistically achievable

21stStrategies


For Risk, Which Way is Up?

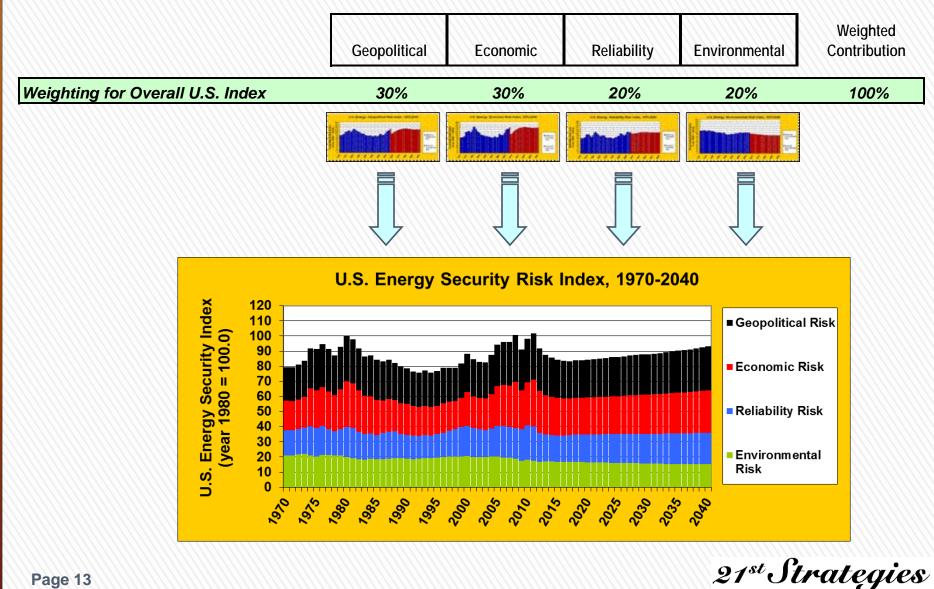
- » For most metrics, upward trends indicate worsening conditions. For a few, up is good.
- » For compiling risks across metrics, essential that directions have consistent meaning.
- » Here, we have adopted the convention that we are measuring <u>security risks</u>, and that bigger is scarier.
 - > Most of the metrics (3/4ths) naturally lean toward up being bad, down being good.
 - > As "risk" seems open-ended, hard to think about lower numbers indicating ever-increasing risk, but bounded at zero.
- » A few metrics need transformation into comparable measures of security risks.

21stStrategies

120

Allocating Metrics to Energy Security Sub-Indexes

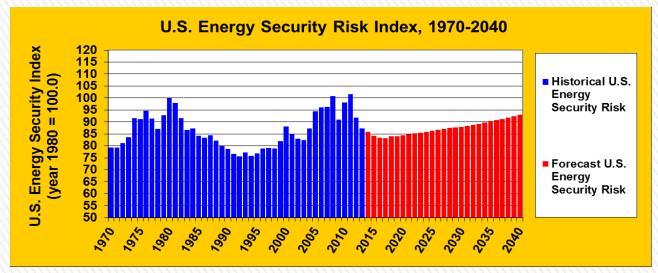
- Each Sub-Index totals 100 points (1980 Base Year) **》**
- 100 points spread among the 37 metrics >>
- Points * metric's risk value, summed over 37 >> metrics, gives Sub-Index value for each year, 1970-2040 Input Weightings


V/////////////////////////////////////							
<u>#</u>	Metric	Units of Measurement	Geopo- litical	Economic	Reliability	Environ- mental	
Global Fue	els Metrics						
1 Se	ecurity of World Oil Reserves	reserves index, freedom & diversity-weighted	9)			
2 Se	ecurity of World Oil Production	production index, freedom & diversity-weighted	7	′ 5	6		
3 Se	ecurity of World Natural Gas Reserves	reserves index, freedom & diversity-weighted	6	5			
4 Se	ecurity of World Natural Gas Production	production index, freedom & diversity-weighted	5	2	3		
5 Se	ecurity of World Coal Reserves	reserves index, freedom & diversity-weighted	4	•			
6 Se	ecurity of World Coal Production	production index, freedom & diversity-weighted	2	1	1		

Research and Development Metrics					
35 Industrial Energy R&D Expenditures	Energy R&D \$/\$1000 GDP		1	2	2
36 Federal Energy & Science R&D Expenditures	R&D \$/\$1000 GDP (2010\$)		1	2	2
37 Science & Engineering Degrees	# degrees/\$billion GDP (2010\$)		1	2	
Total Weightings		100	100	100	10

lotal Weightings

21stStratęgies


Weighting the 4 Sub-Indexes to Derive the Index of U.S. Energy Security Risk

So ... How are We doing?

» Historical Data show ups and downs of U.S. Energy Security:

- > Oil shocks of the 1970s and early 1980s
- > Relative calm, mid-1980s-late 1990s
- > Growing problems in the last decade, rivaling those of the oil shocks

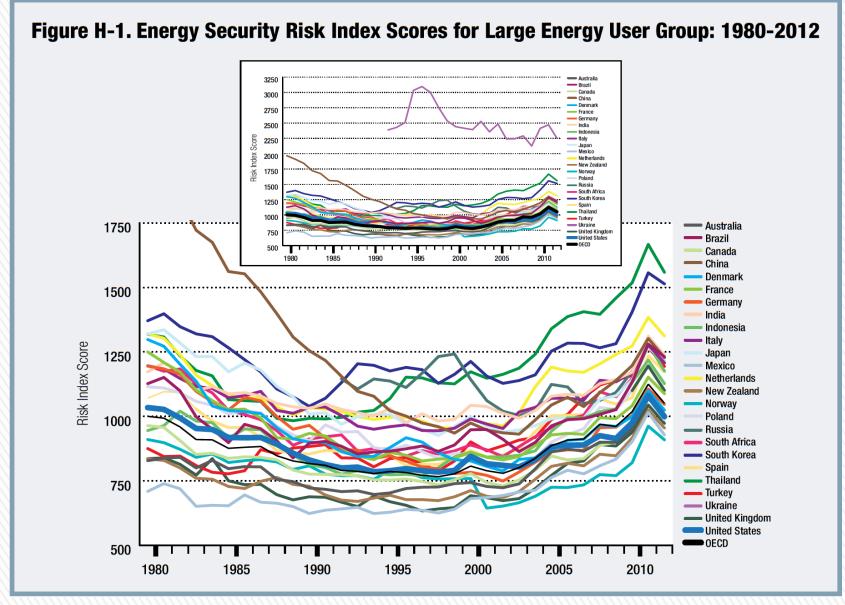
» Progress seen in recent years

- > Global and U.S. recession has provided temporary relief:
- > Policies and shale technologies are making a big difference
- > But risks remain, especially from oil and geopolitical factors
- > A compelling need to avert "Business as Usual" outcome

21st Strategies

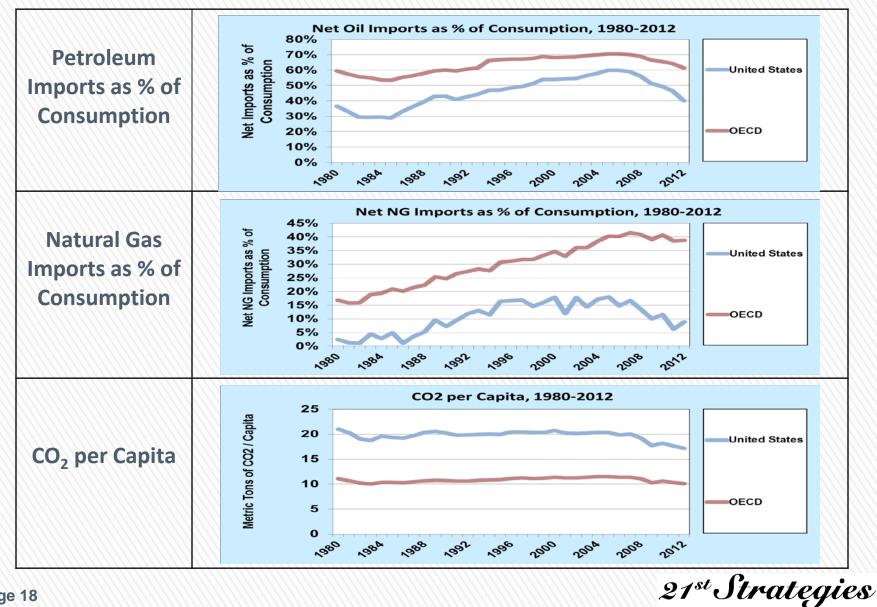
Going Internationally, beyond the U.S. ESRI

- » Energy security is both local and global
 - > Several U.S. ESRI metrics are int'l, with global values
 - > Int'l events affect several other metrics
- » Over time, a shrinking U.S. share in world energy markets
 - > Smaller share of world energy production
 - > Smaller share of world energy consumption, driven by faster growth elsewhere and energy efficiency here
 - > Increasingly, global market conditions are less influenced by U.S. activity
- » Communicating energy security risks internationally helps U.S. as well
 - > Energy efficiency anywhere create benefits everywhere
 - > Ditto with shale gas & renewables

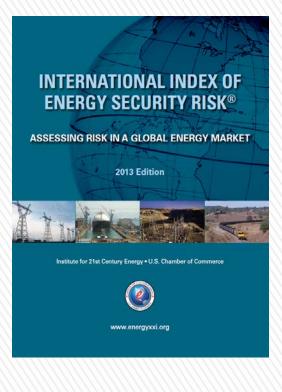

21st Strategies

International Index of Energy Security Risk

- » Extends U.S. Index methods to other countries
 - > Works within limitations of data availability
- » Uses 29 metrics covering imports, expenditures, efficiency, energy-use sectors, etc.
- » Establishes OECD baseline for comparison (1980=1,000)
- » Uses historical data from 1980 to 2013
- » Focuses on 25 large energy consuming economies accounting for 80% of global energy demand
- » Unlike U.S. Index, no forecast component (yet)


21stStrategies

International Index Risk Scores

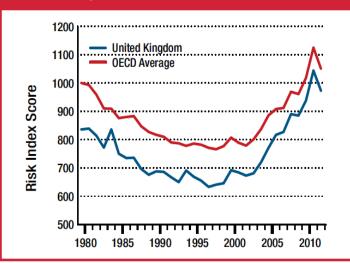


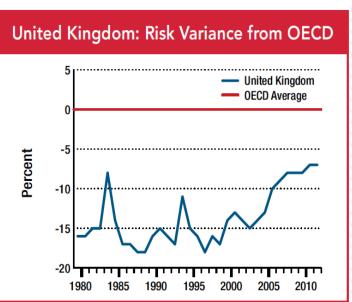
21stStrategies

Charting relative to OECD trends (1980=100) shows countries' absolute & relative trends

International Index Country Rankings

	Countries: 201		
Country	Risk Score	Large Energy User Group Rank	
Norway	909	1	
Mexico	928	2	
New Zealand	955	3	
Jnited Kingdom	973	4	
Canada	987	5	
Jnited States	999	6	
Australia	1,000	7	
Denmark	1,024	8	
Germany	1,047	9	
DECD	1,051		
rance	1,088	10	
Poland	1,101	11	
ndonesia	1,127	12	
Spain	1,173	13	
Russia	1,176	14	
Turkey	1,194	15	
South Africa	1,207	16	
taly	1,208	17	
lapan	1,219	18	
China	1,228	19	
Brazil	1,231	20	
ndia	1,237	21	
Vetherlands	1,312	22	
South Korea	1,514	23	
Thailand	1,559	24	
Ukraine	2,250	25	Strategie

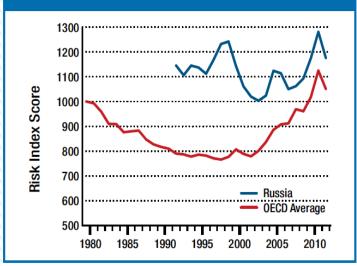

Changes in Country Rankings over Time


	1980	1985	1990	1995	2000	2005	2010	2011	2012
stralia	2	5	3	4	4	6	5	5	7
azil	12	8	11	13	16	14	14	18	20
Canada	8	7	5	5	6	5	6	6	5
China	23	23	23	20	17	1 <mark>8</mark>	21	20	19
Denmark	18	14	12	16	8	8	8	8	8
France	17	16	15	12	11	11	10	10	10
Germany	14	15	16	10	7	7	9	9	9
ndia	13	20	19	21	21	20	19	21	21
ndonesia	7	9	7	6	12	12	13	12	12
taly	15	18	21	17	19	19	18	17	17
lapan	20	21	18	19	20	16	15	14	18
Vlexico	1	1	1	1	1	2	2	2	2
Netherlands	21	19	20	18	18	22	22	22	22
New Zealand	3	2	4	3	3	4	3	3	3
Vorway	6	6	6	8	5	1	1	1	1
Poland	11	12	13	14	10	10	12	11	11
Russia	24	24	24	23	22	21	20	19	14
South Africa	16	13	14	15	14	13	16	16	16
South Korea	22	22	22	24	24	23	23	23	23
Spain	10	11	9	11	13	17	11	13	13
Fhailand	19	17	17	22	23	24	24	24	24
「urkey	5	4	10	9	15	15	17	15	15
Jkraine	25	25	25	25	25	25	25	25	25
Jnited Kingdom	4	3	2	2	2	3	4	4	4
Jnited States	9	10	8	7	9	9	7	7	6 Itrate

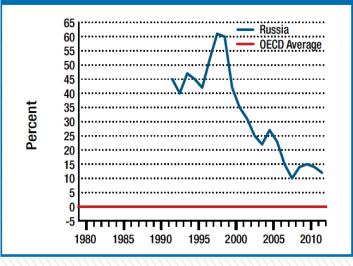
Page 20

Lessons: UK

United Kingdom vs. OECD: Risk Index Scores


In general, resource-rich countries with efficient economies rank best

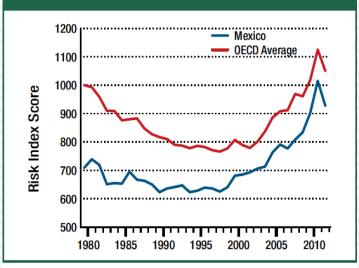
- » UK Ranked #4
 - > Resource-rich
 - > Efficient economy
- » <u>But</u>—UK risks rising driven largely by
 - > Growing natural gas & coal imports
- » Very high electricity prices
- » Can UK shale gas development lower costs & risks?

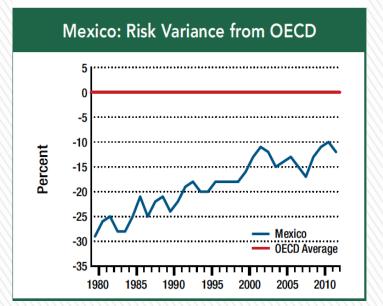

21st Strategies

Lessons: Russia

Russian Federation vs. OECD: Risk Index Scores

Russian Federation: Risk Variance from OECD

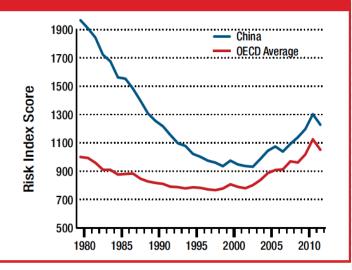

Conversely, resource-rich countries with inefficient economies do not score as well


- » Russia: Ranked #14
- » Huge reserves of oil, gas & coal
- » <u>But</u>—worst energy intensity of 25 countries
- » <u>Also</u>—Russia using resource clout to influence gas markets in Europe

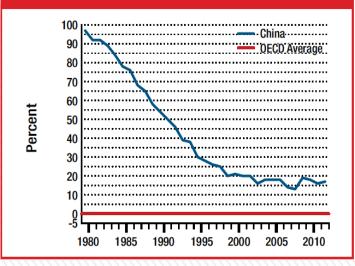
21st Stratęgies

Lessons: Mexico

Mexico vs. OECD: Risk Index Scores


Resources are not enough without proper investment environment

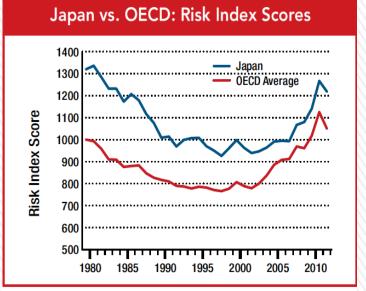
- » Mexico ranked #1 or #2 for entire period
- » <u>But</u>—Mexico rapidly losing comparative advantages
 - > Gas & coal import, energy intensity
 & transportation risks rising
- » Oil production declining
 - > Need proper investment environment to maintain output
 - > Constitutional reform of hydrocarbon sector should help Mexico maintain its high ranking


21st Strategies

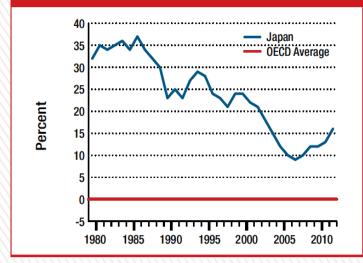
Lessons: China

China vs. OECD: Risk Index Scores

China: Risk Variance from OECD


Strong economic growth in emerging economies has exposed underlying weaknesses in energy security

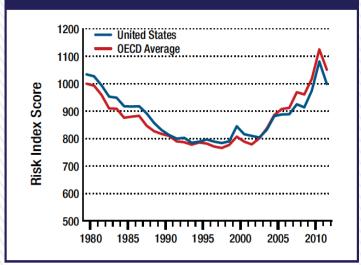
- » China: #19 in 2010
- » Improvements vis-a-vis OECD stalled beginning in 2000
- » Energy intensity and per capita energy use metrics getting worse
 - > Industrialization
 - > Expanding middle class
 - > Greater auto ownership
- Improving energy security becoming a strategic priority


21stStratęgies

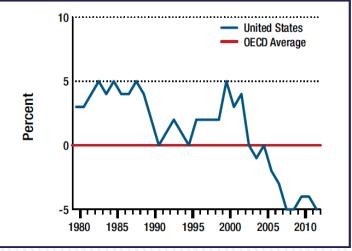
Page 24

Lessons: Japan

Japan: Risk Variance from OECD


<u>Fukushima</u>

- » Japan: Ranked slipped from #14 in 2011 to #18 in 2012
- Impact of policy reaction to Fukushima in 2011
- » <u>But</u>—Risks today lower than in 1980
- » Japan's among the best scores for:
 - > Energy intensity
 - > Energy use per capita
- » <u>Also</u>– What will Japan do about its large nuclear fleet?
 - > Will Germany follow through on its nuclear shutdown?

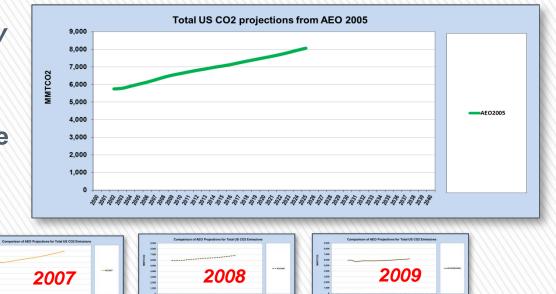

21st Stratęgies

Lessons: United States

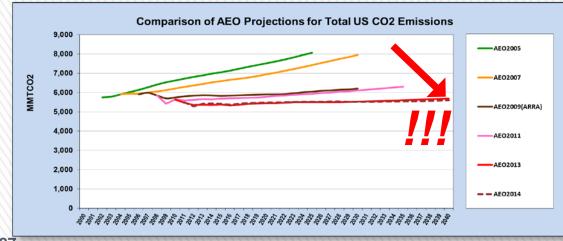
United States vs. OECD: Risk Index Scores

United States: Risk Variance from OECD

New technology can be a disruptive & positive force

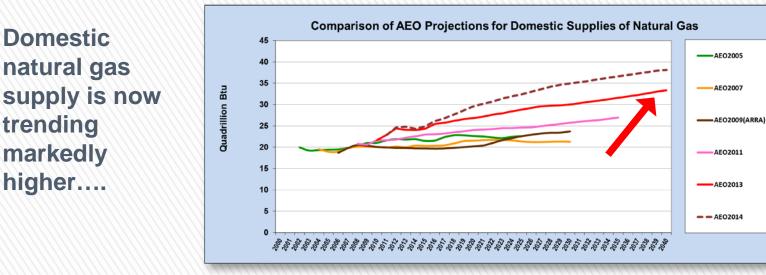

- » U.S.: Ranked #6, up three places since 2005
- » Risks running consistently below
 OECD average after 2006
- Reflects impact of shale technology and other developments
- Benefits of low-cost gas ripple thru other metrics
- » Will "Shale Gale" blow overseas?

21st Strategies

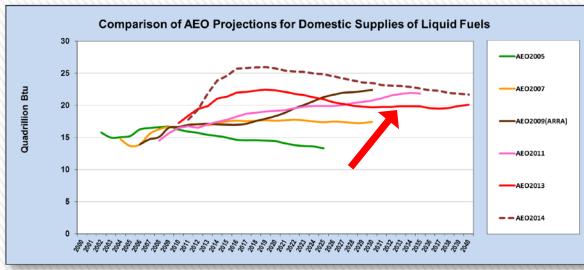

Using EIA forecasts like a Flip Book Animation

Each year, EIA's *Annual Energy Outlook* updates EIA's projections of the future

... but there's a good reason we don't call it the "Once and Forever Energy Outlook"



By comparing the changes in *AEO*s over time, we can tell a new kind of story: *What has changed our thinking over time?*


21stStratęgies

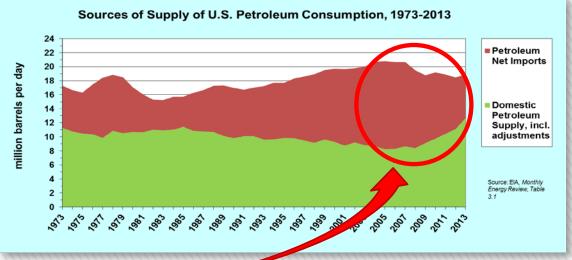
Page 27 EIA, Annual Energy Outlook, multiple years.

A dramatic change in future U.S. oil & gas production

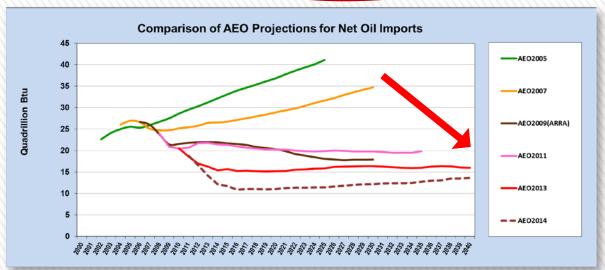
Developed from US Energy Information Administration, Annual Energy Outlook, multiple years.

Developed from US Energy Information Administration, *Annual Energy Outlook*, multiple years. **Page 28**

... and domestic petroleum supplies are similarly surging


... with profound effects on U.S. and world markets.

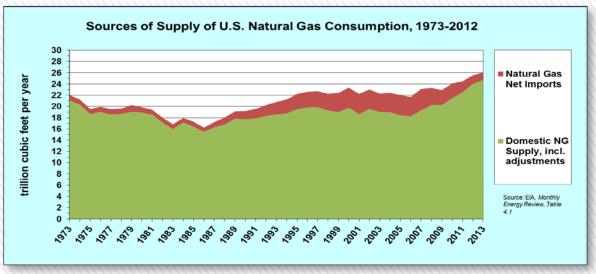
21stStratęgies


A dramatic change in the outlook for U.S. oil imports

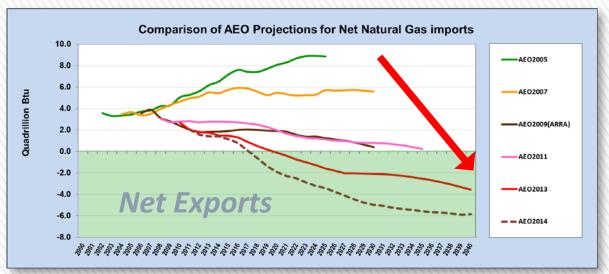
Imports make up the difference between U.S. consumption and domestic production.

Recently, sharply increasing oil production, & a contraction in imports

Developed from US Energy Information Administration, Monthly Energy Review, Table 3.1.


Developed from US Energy Information Administration, *Annual Energy Outlook*, multiple years. **Page 29**

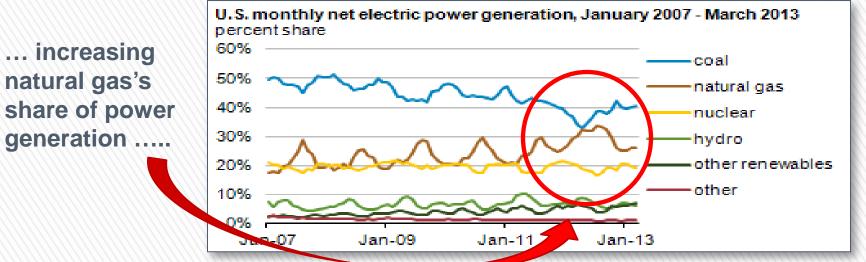
With domestic supply now trending higher, and consumption trending lower, expectations of future imports are shrinking rapidly.


21stStrategies

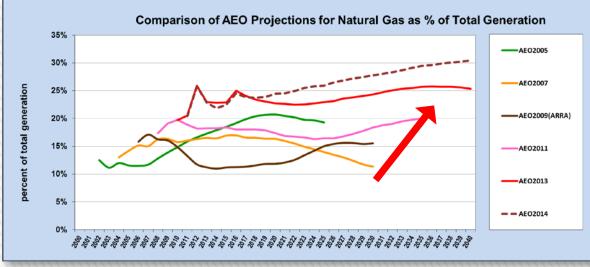
Dramatic changes also in the U.S. NG import outlook

Imports make up the difference between U.S. consumption and domestic production.

Developed from US Energy Information Administration, Monthly Energy Review, Table 4.1.



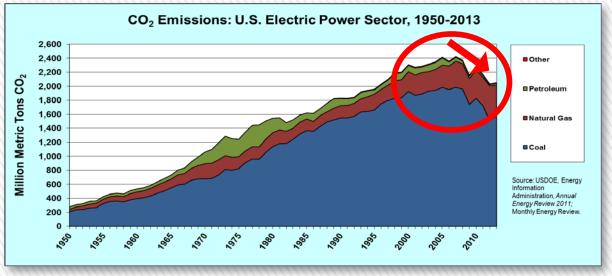
With domestic supply trending markedly higher, prior notions of growing import needs have now turned into the U.S. becoming a major net gas *exporter*.


Developed from US Energy Information Administration, Annual Energy Outlook, multiple years.

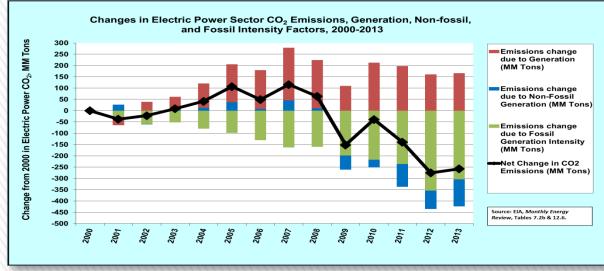
21stStrategies

Lower Natural Gas prices are increasing gas generation share in the U.S. power market

US Energy Information Administration, "Ocar regains some electric generation market share from natural gas," Today in Energy, May 23, 2013, http://www.eia.gov/todayinenergy/detail.cfm?id=11391.


... with a greater role for natural gas in future electric power generation

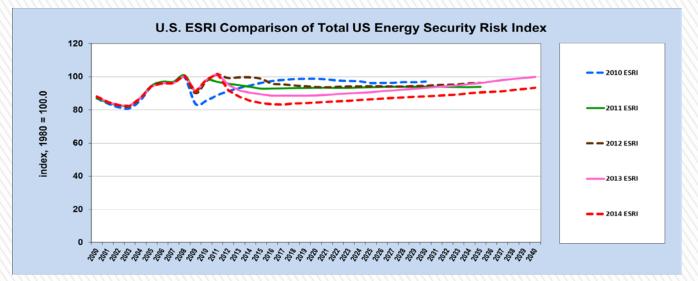
21stStratęgies


Developed from US Energy Information Administration, Annual Energy Outlook, multiple years.

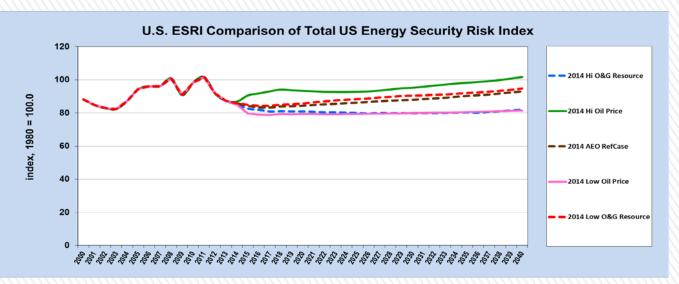
Growth in Natural Gas use is driving down CO₂ emissions in the electric power sector

... already leading to a reversal of a decades-long trend in electric power CO₂ emissions growth.....

Developed from US Energy Information Administration, Monthly Energy Review.


Developed from US Energy Information Administration, Monthly Energy Review, Tables 7.2b & 12.6.

The changes due to fossil CO₂ intensity have been much greater than the changes in non-carbon generation ...


21st Strategies

Leading to Improved U.S. Energy Security Risk

Significant improvement over 5 years' of ESRI reports

Oil &Gas scenarios are a major uncertainty and/or opportunity

21st Strategies

Summary Thoughts

- » Energy security risks can be defined, measured, tracked and forecast.
- 1. We are all in this together
 - > Energy security risks are linked in a global energy market
 - > A disruption anywhere can affect consumers everywhere
 - > Improvements anywhere causes improvements everywhere
- 2. Each country is unique
 - > Energy security affected by factors countries have control over and those they don't
 - > Global factors
 - > Country-specific resource endowment, economy, geography, etc.

3. Policies matter

- > Technologies: supply and demand
- > Investment
- > Efficiency and environmental

21stStratęgies

Questions?

Dan Klein Twenty-First Strategies, LLC Santa Fe, NM 87506

505-467-8245

dklein@21st-strategies.com

21stStratęgies